n型与半绝缘 6H-SiC 晶体的超快载流子动力学

聂媱,王友云,吴雪琴,方宇*

苏州科技大学数理学院, 江苏 苏州 215009

摘要 利用带间激发的超快瞬态吸收光谱,研究了导电(n型)氮(N)掺杂和半绝缘(SI)钒(V)掺杂 6H-SiC 晶片的 超快载流子复合动力学过程。N杂质和/或固有缺陷的间接复合主导了n型 6H-SiC 的载流子弛豫,其寿命超过了 10 ns。与n型 6H-SiC 相比,V 掺杂对 SI-6H-SiC 的瞬态吸收具有显著的调制作用,这源于由 V 深能级的载流子俘 获引起的一个额外的载流复合过程。载流子俘获(寿命约为 160 ps)比间接复合快 2 个数量级以上。通过简化能 级模型并进行全局分析,研究了 6H-SiC 的载流子复合机制,准确地获得了 6H-SiC 的载流子寿命。 关键词 超快光学;载流子动力学;瞬态吸收光谱;n型 SiC;半绝缘 SiC

中图分类号 O474 文献标识码 A

doi: 10.3788/LOP56.063201

Ultrafast Carrier Dynamics in n-Type and Semi-Insulating 6H-SiC Crystals

Nie Yao, Wang Youyun, Wu Xueqin, Fang Yu*

School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China

Abstract The ultrafast transient absorption spectroscopy of interband excitation is utilized to evaluate the ultrafast carrier recombination dynamics in the conductive (n-type) nitrogen (N)-doped and semi-insulating (SI) vanadium (V)-doped 6H-SiC wafers. The carrier relaxation of n-type 6H-SiC with carrier lifetime more than 10 ns is dominated by indirect recombination through N impurities and/or inherent defects. Compared with the n-type 6H-SiC, the V-doped one has a pronounced modulation of transient absorption, resulting from an additional carrier recombination process caused by the carrier trapping of V deep levels. The carrier-trapping with a lifetime of about 160 ps is more than two orders of magnitude faster than the indirect recombination. With a simplified energy level model and the global analysis, the carrier recombination mechanism is investigated and the carrier lifetime of 6H-SiC is determined accurately.

Key words ultrafast optics; carrier dynamics; transient absorption spectroscopy; n-type SiC; semi-insulating SiC OCIS codes 320.2250; 320.7150; 320.7090; 300.6530

1引言

碳化硅(SiC)是一种由硅(Si)和碳(C)构成的宽 带隙半导体材料。与传统半导体材料 Si 相比,SiC 的临界击穿场强是 Si 的 10 倍,热导率是 Si 的 3 倍。 因此,SiC 被认为是一种适用于制造各种高功率、高 温、高频和高抗辐射等特性的光电子器件的半导体 材料^[1-2]。SiC 在不同的物理化学环境下,可形成形态、构造和物理性质差异极大的同质多象变体。目前发现 SiC 有 200 多种同质多象变体,其中最主要为 3C-,4H-,6H-SiC。与 3C-SiC 相比,6H-SiC 具有较大的带隙,是 Si 的 3 倍。随着碳化硅晶体质量的显著提高和器件技术的发展,研究人员已经成功制备出高压 SiC 肖特基势垒二极管(SBDs)和金属氧

收稿日期: 2018-09-25; 修回日期: 2018-09-27; 录用日期: 2018-10-10

基金项目:国家自然科学基金(11704273)、江苏省自然科学基金(BK20170375)、江苏省高校自然科学基金(17KJB140021)、江苏省十三五重点学科(20168765)、江苏省高等学校大学生创新创业训练计划(201810332075X)

^{*} E-mail: yufang@usts.edu.cn

化物半导体场效应晶体管^[3]。通常情况下,n型和p型SiC可以分别通过氮(N)掺杂和铝(Al)掺杂来实现。而半绝缘(Semi-insulating,SI)碳化硅被认为是高压光电导开关的备选半导体材料^[4],它可以通过钒(V)掺杂来获得,这是因为V作为受体,能有效补偿剩余杂质^[5]。SiC中的不同元素的掺杂,不仅可以改变材料的导电特性,也能极大改变其光电特性^[6]。最近,根据第一性原理可知,预测SI-SiC中的中性双空位点缺陷可作为量子计算中的量子比特^[7]。

尽管晶体生长和器件制备技术不断地进步, 但是材料中的缺陷依旧会限制器件的性能和进一 步的应用。半导体中的缺陷可以在禁带中引入能 级,影响载流子的寿命进而影响器件的性能。因 此,为了更好地改善SiC器件的性能,了解影响载 流子弛豫和寿命等的动力学过程至关重要。此 外,控制 SiC 中的载流子寿命有助于制备电压大于 10 kV的高压器件^[8]。碳空位(V_c)缺陷的两个不 同电荷态 $Z_{1/2}$ 和 $EH_{6/7}$ 是 SiC 中最常见的缺陷^[9-10], 研究人员采取了多种方法来降低这两种缺陷的浓 度,方法有:在生长晶体过程中,增加碳和硅的比 例(C/Si)或者降低生长温度^[10]。然而,研究人员 通常利用时间分辨光致发光(TRPL)、载流子吸收 (TRFA)和四波混频等实验研究 SiC 的载流子动 力学[11-15]。以上实验均由紫外激光激发,光生载 流子分布极不均匀,穿透深度小于 50 µm。在这种 情况下,除了上述的缺陷之外,表面复合、载流子 扩散、俄歇复合等其他复合过程也会影响载流子 动力学。多种不同的载流子复合过程在 SiC 中共 存,难以区分,使得载流子动力学的研究变得十分 复杂和不准确。

利用超快瞬态吸收光谱(TAS)对样品进行多 波长探测。同时,飞秒时域的测量对于进一步发展 高速和高迁移率的设备至关重要。通过调控载流子 的分布,可以成功地区分出不同的载流子复合过 程^[16]。本文针对载流子近表面分布,使用全光飞秒 TAS技术对 n型(n-6H-SiC)和 SI-6H-SiC 晶片的 载流子动力学进行探究。与 n型晶片相比,在 SI-6H-SiC 晶片上可以观察到一个并不是表面复合的 额外的弛豫过程,被认为是深 V 受体的载流子俘获 效应。此外,V 掺杂 SiC 在光激发后对载流子吸收 光谱具有明显的调制作用。SI-6H-SiC 显示了宽带 瞬时吸收,可覆盖整个可见光谱。

2 样品与实验方法

实验使用的 2 片 2 inch(1 inch= 2.54 cm)6H-SiC 单晶片均由相同的制备方法获得,并均被双面 抛光,它们具有相同的且极低的微管缺陷密度(小于 5 cm⁻²)。在制备过程中掺入不同的元素可以改变 6H-SiC 的导电类型与电导率。其中,n-6H-SiC 晶 片主要是由 N 掺杂实现,晶片的厚度为 424 μ m,其 电阻率低至 0.05 Ω ·cm。而掺入 V 元素的 SI-6H-SiC,厚度为 350 μ m,测得其电阻率大于 10⁵ Ω ·cm,证 明了其半绝缘的特性。为了比较不同 6H-SiC 中不同 杂质的浓度,利用二次离子质谱(SIMS)方法,测得杂 质浓度,见表 1。由表 1 可知,2 片 6H-SiC 晶体的杂 质浓度及导电类型的本质区别在于 N 和 V 元素。

表 1 基于 SIMS 测得的掺杂 6H-SiC 样品的浓度

 Table 1
 Common impurity concentrations in 6H-SiC

 samples determined by SIMS
 10¹⁷ cm⁻³

6H-SiC	Ν	V	В	Al
n-type	92	0.5	2.3	6.7
SI	12	2.0	2.9	6.6

利用 TAS 技术探究超快载流子动力学过程,对 波长相关的瞬态吸收进行测量。与 TRPL 和 TRFA 技术相比, TAS 技术不受载流子复合方式的 影响,能够在不同光子能量探测下获得非平衡载流 子浓度,其测量光路示意图如图1所示。用于带间 激发的抽运光束的光源为波长可调的光学参量放大 器(OPA, Light Conversion ORPHEUS, 190 fs, 6 kHz),其以 137 Hz 的频率被斩波后经透镜聚焦 在待测样品处,光斑半径约 1.2 mm。用波长为 1030 nm 的激光脉冲聚焦到 2 mm 非线性介质蓝宝 石基片上,产生波长为450~780 nm 的连续谱白光 (WLS)作为探测脉冲。由 Si 二极管阵列光电探测 器检测透过样品之后的透射探测脉冲信号,结合成 像光谱仪,测量抽运脉冲和探测脉冲之间延迟,通过 标准同步锁相放大器比较有无抽运脉冲时的透过样 品的白光超连续谱的强度,即可得到不同探测波长 λ 和延迟时间 t 下样品的差分光密度($\Delta O_{\rm D}$),表 示为

$$\Delta O_{\rm D}(\lambda,t) = \lg \left(\frac{I_{\rm unpumped}}{I_{\rm pumped}} \right), \qquad (1)$$

式中: *I*_{unpumped}为无抽运光激发时的白光超连续谱强度, 而 *I*_{pumped}为有抽运光激发时的白光超连续谱强度。TAS测量系统的时间分辨率为 280 fs。所有实验测量均在室温下进行。

Fig. 1 Experimental light path diagram of femtosecond TAS

3 实验结果与讨论

n型和 SI 6H-SiC 晶体的线性吸收光谱如图 2 所示。由于 6H-SiC 为间接带隙半导体,因此带隙 E_s 可以在曲线突增的线性区域通过 $\alpha^{1/2}$ 与光子能 量 $h\nu$ 的函数来估计,其中 α 是吸收系数。由此可 得,n型和 SI 6H-SiC 的带隙分别为 2.95 eV 和 2.98 eV。计算结果与已知的高电阻率 6H-SiC 数据 吻合极好^[17]。SI-6H-SiC 在带隙以下没有吸收,故 可以忽略带隙中的带尾态缺陷或杂质态,由此证明 6H-SiC 具有优异的晶体和光学质量。而 N 掺杂在 n-6H-SiC 中引入浅施主能级^[18],导致 6H-SiC 的线 性吸收发生显著变化。与 SI-6H-SiC 相比,n-6H-SiC 在 427 nm(2.90 eV)和 626 nm(1.98 eV)处出现 了带隙以下的光吸收和吸收峰,前者可以认为是价 带(VB)至施主能级的跃迁,后者可以认为是施主能 级或导带(CB)底至更高导带的载流子吸收^[19-20]。

在 365 nm 紫外脉冲激发下,n 型和 SI 6H-SiC 晶片的时间分辨瞬态吸收(TRTA)光谱分别如 图 3(a)、(b)所示。其中,-5 ps 表示无探测光、没

图 2 n型(N 掺杂)和半绝缘(V 掺杂)6H-SiC 晶体 线性吸收光谱

Fig. 2 Linear absorption spectra of n-type (N-doped) and SI (V-doped) 6H-SiC wafers

有受到抽运光的作用时的瞬态吸收光谱。N原子和 V原子的掺杂对吸收光谱具有完全不同的调制作 用。n-6H-SiC和SI-6H-SiC在抽运光激发初始(激 发时间小于 2 ps)时,吸收光谱基本相同,分别在 638 nm和637 nm(1.94 eV)处有峰值。因为抽运 脉冲的带间激发可以在导带和价带中产生自由载流 子,所以吸收响应与 n-6H-SiC 的线性吸收光谱相 同,只是吸收峰的位置有微小偏差。随后,n-6H-

图 3 不同延迟时间下的吸收光谱图。(a) n-6H-SiC;(b) SI-6H-SiC

Fig. 3 Transient absorption spectra under different time delays. (a) n-6H-SiC; (b) SI-6H-SiC

SiC 瞬态吸收谱的峰值和形状几乎不随延迟时间 (1~1600 ps)而变化,只有幅值略微变化。而在 SI-6H-SiC 中,吸收谱线的形状在 10 ps 内发生了 变化,并在约 100 ps 时谱线的峰值完全消失。这 种现象表明:V掺杂导致 6H-SiC 带隙中引入了深 能级。同时,与 n型 6H-SiC 相比,瞬态吸收光谱 的形状和幅度有显著变化。

通常,可以利用平衡方程^[14]对时间和空间分布 的载流子动力学进行数值模拟,方程表示为

$$\frac{\partial \Delta N(z,t)}{\partial t} = G(z,t) + D \frac{\partial^2 \Delta N(z,t)}{\partial z^2} - \frac{\Delta N(z,t)}{\tau_{\text{SRH}}} - B\Delta N (z,t)^2 - C\Delta N (z,t)^3, \quad (2)$$

式中: ΔN 约为 10¹⁷ cm⁻³,表示在抽运光能流约为 150 μ J/cm² 时的非平衡载流子浓度;G 为载流子注 入函数;D 为双极扩散系数, τ_{SRH} 为 Shockley-Read-Hall(SRH)寿命^[21];B 为双分子(辐射)复合系数;C 为俄歇复合系数。对于 365 nm 的带间激发,载流 子在 $d = \alpha^{-1} \sim 30 \ \mu m$ 的激发态区域内产生,分布 在接近样品表面,显著大于估计的电子扩散长度, $L_{\rm D} = (D\tau_{\rm d})^{1/2} \approx 1.6 \ \mu m (D = 2.7 \ {\rm cm}^2/{\rm s}^{[22]}, \tau_{\rm d} =$ 10 ns为估算的载流子寿命)。因此,可以消除载流 子扩散效应。除了本征复合过程之外,表面处的高 密度缺陷也可以有效地俘获载流子,其寿命为 $\tau_{\rm surf}$ 。 根据分析,测量的载流子寿命 $\tau_{\rm meas}$ 可以写成

$$\frac{1}{\tau_{\text{meas}}} = \frac{1}{\tau_{\text{SRH}}} + \frac{1}{\tau_{\text{surf}}} + \frac{1}{\tau_{\text{Rad}}} + \frac{1}{\tau_{\text{Auger}}},\qquad(3)$$

式中:辐射寿命 $\tau_{Rad} = 1/(B\Delta N)$,俄歇寿命 $\tau_{Auger} = 1/(C\Delta N^2)$ 。辐射复合在直接带隙半导体中占主导地位,但在间接带隙半导体(如 SiC,Si 等)中对复合

的贡献小得多。此外,俄歇复合过程将在载流子浓度 $\Delta N > 1 \times 10^{18}$ cm⁻³时产生贡献^[14]。基于上述分析,本实验的测量中,可以忽略辐射和俄歇复合,因此可以通过体缺陷的间接 SRH 复合和表面缺陷复合共同来决定 6H-SiC 中的载流子寿命。

图 4 显示了从 TAS 中提取的 6H-SiC 在不同 探测波长下的 TRTA 响应。为了详尽获得不同能 态下载流子的演化(载流子寿命和吸收幅度)信息, 使用全局分析来拟合 TRTA 响应(图 4 中的实 线)^[23]。所建立的不同能态下的光生载流子速率方 程和沿样品中传播方向的 ΔO_D 方程可表示为

$$\begin{cases} \frac{\partial N(z,t)}{\partial t} = G(z,t) - \frac{N_{1}(z,t)}{\tau_{1}} \\ \frac{\partial N_{n}(z,t)}{\partial t} = \frac{N_{n-1}}{\tau_{n-1}} - \frac{N_{n}}{\tau_{n}} (n > 1), \qquad (4) \\ \frac{\partial \Delta O_{D}(z,t)}{\partial z} = \sum_{n} \sigma_{n}(\lambda) N_{n}(z,t) \end{cases}$$

式中: τ_n , σ_n , N_n 分别表示响应能态下的载流子寿命、吸 收截面和载流子浓度;n型和 SI 6H-SiC 晶片测得的载 流子寿命和最大吸收截面 σ_m 见表 2。6H-SiC 的载流 子吸收截面比宽带隙半导体 GaN(GaN 的吸收截面数 据)大了一个量级以上^[24]。n型和 SI 6H-SiC 均获得三 个载流子寿命。如图 5 所示,紫外抽运光(3.4 eV)最初 激发产生的非平衡载流子位于导带 E_c +0.5 eV 处,有 效质量大于导带底部^[25]。因此,在图 5 中观察到的约 5 ps 吸收信号的建立时间反映了非平衡载流子弛豫到 导带底部(M-能谷)的过程[图 5 中的过程①]。对应的 最快时间常数 τ_1 均为 2~3 ps,这与飞秒光谱脉冲激发 载流子之后半导体中载流子-载流子热化和载流子-声 子相互作用的时间响应一致^[26-27]。

图 4 典型探测波长下的时间分辨瞬态吸收响应曲线。(a) n-6H-SiC;(b) SI-6H-SiC Fig. 4 Time-resolved transient absorption (TRTA) responses for typical probe wavelengths. (a) n-6H-SiC; (b) SI-6H-SiC

两片 6H-SiC 都拟合得到了 τ₂ 约 200 ps 的载 流子寿命和 τ₃ 约 10 ns 的载流子寿命,但是对应的 载流子动力学过程却是截然不同的。对于 n-6H-SiC 晶体,考虑到 N 为浅施主杂质,其余杂质浓度较 低,τ₃可以认为是通过本征缺陷 SRH 复合的载流 子寿命,其寿命与宽带隙半导体 GaN 寿命(12 ns) 相近^[24]。在导带中的载流子会吸收探测光子跃迁 到更高的导带,对应于图5中的过程②。而τ₂可以认

表 2 不同 6H-SiC 晶体 TAS 响应测量和拟合 得到的光物理参数

Table 2Photo-physical parameters obtained by measuringand fitting of TAS responses of different 6H-SiC wafers

6H-SiC	$ au_1/\mathrm{ps}$	$ au_2/\mathrm{ps}$	τ_3/ns	$\sigma_{\rm m}/(10^{-17}{\rm cm}^2)$
n-type	2.0 ± 0.5	$189\!\pm\!25$	16 ± 4	About 6
SI	3.8 ± 1.3	163 ± 22	8 ± 2	About 5

图 5 在 3.4 eV 抽运光激发下 6H-SiC 晶体的 载流子弛豫和能带示意图

Fig. 5 Schematic of energy band and carrier relaxation in 6H-SiC wafers under pump excitation at 3.4 eV

为是表面复合寿命「图 5 中的过程④],表面复合在厚 度大于 100 µm 的样品中占比很低^[28],所以 TAS 激发 后的 n-6H-SiC 中光谱波形状几乎不变。与 n-6H-SiC 相比,V 掺杂的 SI-6H-SiC 观察到了很明显的吸收谱变 化。SiC 晶格中 Si 的替位 V 在 SiC 中是双性的^[29-30], 根据费米能级的位置可充当施主 V4+/5+ 或受主 V^{3+/4+},这使得 V 成为非常有效的载流子陷阱^[31]。在 V掺杂的6H-SiC中观察到的光致发光强度和载流子 寿命比未掺杂晶片的强度和寿命低和快3个数量级以 上^[22]。因此, τ_2 被认为是被激发的电子到 $V_{Si}(V^{3+/4+})$ 受体的俘获过程,见图 5 中的过程③。带隙中的被俘 获载流子对瞬态吸收具有相当大的调制作用,瞬态吸 收光谱在几十皮秒内变化,与 n-6H-SiC 相比,吸收峰 消失,光谱在整个探测波段随波长逐渐增强。这与文 献[30]报道的 6H-SiC 中深 V 能级的结果一致:深受主 能级在 E_{c} = 0.85 eV处, 施主能级在 E_{c} = 1.54 eV处。 此外, 元3 被认为是俘获电子的复合过程。图 5 给出了 能带模型示意图,其中包含在上文解释中使用的各种 能态和载流子弛豫机制。图 5 中还显示了导带中的自 由载流子吸收过程。CB1代表能量最低的导带(即 M-能谷),CB2代表能量较高的导带(以 Γ-能谷为假设)。 值得注意的是,超快载流子俘获时间使 SI-6H-SiC 在通 信波段满足超快全光开关的要求[27]。另一方面,相对 长的俘获态载流子寿命和较大的吸收截面有利于材料 在光限幅和光伏方面的进一步应用。

4 结 论

利用超短脉冲下的瞬态吸收光谱研究了 N 掺 杂(n型)和 V 掺杂(SI)6H-SiC 晶片的载流子弛豫 动力学和机理。利用紫外飞秒脉冲在 6H-SiC 能带 边缘附近激发产生约为 30 µm 的非平衡载流子分 布。SRH与表面复合是导致载流子弛豫的主要因 素。1.94 eV 处的瞬态吸收峰归因于自由载流子吸收 到较高导带,n型6H-SiC除了小部分载流子通过表 面复合(约180 ps)以外,其余绝大部分载流子具有较 长寿命(大于 10 ns)。在 SI-6H-SiC 中,由于 V^{3+/4+} 和 V4+/5+ 深能级的载流子俘获效应,观察到了寿命更 快的(约160 ps)额外载流子复合路径。带隙中的俘 获状态调制了 6H-SiC 中的宽带瞬态吸收响应,其吸 收截面比 GaN 大一个量级。利用简化的载流子弛豫 模型解释载流子动力学,利用全局拟合得到了不同能 态下的载流子吸收截面和寿命。研究了掺杂对 SiC 能带结构、载流子动力学特性的影响,对 SiC 材料和 器件的进一步应用和开发提供了重要的参考。

参考文献

- Neudeck P G. Progress in silicon carbide semiconductor electronics technology [J]. Journal of Electronic Materials, 1995, 24(4): 283-288.
- [2] Ni Y X, Jing H Q, Kong J X, et al. Thermal performance of high-power laser diodes packaged by SiC ceramic submount [J]. Chinese Journal of Lasers, 2018, 45(1): 0101002.
 倪羽茜,井红旗,孔金霞,等.碳化硅封装高功率半导体激光器散热性能研究[J].中国激光, 2018, 45(1): 0101002.
- Liu G, Tuttle B R, Dhar S. Silicon carbide: A unique platform for metal-oxide-semiconductor physics [J].
 Applied Physics Reviews, 2015, 2(2): 021307.
- Zhu K, Doğan S, Moon Y T, et al. Effect of n⁺-GaN subcontact layer on 4H-SiC high-power photoconductive switch[J]. Applied Physics Letters, 2005, 86(26): 261108.
- [5] Zvanut M E, Konovalov V V, Wang H Y, et al. Defect levels and types of point defects in high-purity and vanadium-doped semi-insulating 4H-SiC[J]. Journal of Applied Physics, 2004, 96(10): 5484-5489.
- [6] Yan W J, Zhang C H, Qin X M, et al. Modulation mechanism of P-doping on photoelectric properties of two-dimensional SiC [J]. Laser & Optoelectronics

Progress, 2018, 55(9): 091603.

闫万珺,张春红,覃信茂,等.P 掺杂对二维 SiC 光 电特性调制的机理[J].激光与光电子学进展,2018, 55(9):091603.

- [7] Gordon L, Janotti A, van de Walle C G. Defects as qubits in 3C- and 4H-SiC [J]. Physical Review B, 2015, 92(4): 045208.
- [8] Saito E, Jun S D, Kimoto T. Control of carrier lifetime of thick n-type 4H-SiC epilayers by hightemperature Ar annealing [J]. Applied Physics Express, 2016, 9(6): 061303.
- [9] Son N T, Trinh X T, Løvlie L S, et al. Negative-U System of carbon vacancy in 4H-SiC [J]. Physical Review Letters, 2012, 109(18): 187603.
- [10] la Via F, Camarda M, la Magna A. Mechanisms of growth and defect properties of epitaxial SiC [J]. Applied Physics Reviews, 2014, 1(3): 031301.
- [11] Klein P B, Shanabrook B V, Huh S W, et al.
 Lifetime-limiting defects in n-4H-SiC epilayers [J].
 Applied Physics Letters, 2006, 88(5): 052110.
- [12] Neimontas K, Malinauskas T, Aleksiejūnas R, et al. The determination of high-density carrier plasma parameters in epitaxial layers, semi-insulating and heavily doped crystals of 4H-SiC by a picosecond four-wave mixing technique [J]. Semiconductor Science and Technology, 2006, 21(7): 952-958.
- [13] Klein P B. Carrier lifetime measurement in n-4H-SiC epilayers
 [J]. Journal of Applied Physics, 2008, 103 (3): 033702.
- [14] Ščajev P, Gudelis V, Jarašiūnas K, et al. Fast and slow carrier recombination transients in highly excited 4H- and 3C-SiC crystals at room temperature [J]. Journal of Applied Physics, 2010, 108(2): 023705.
- [15] Ščajev P, Jarašiūnas K. Temperature- and excitationdependent carrier diffusivity and recombination rate in 4H-SiC[J]. Journal of Physics D: Applied Physics, 2013, 46(26): 265304.
- [16] Fang Y, Yang J Y, Yang Y, et al. Ultrafast carrier dynamics in a p-type GaN wafer under different carrier distributions [J]. Journal of Physics D: Applied Physics, 2016, 49(4): 045105.
- [17] Ščajev P, Kato M, Jarašiūnas K. A diffraction-based technique for determination of interband absorption coefficients in bulk 3C-, 4H- and 6H-SiC crystals[J]. Journal of Physics D: Applied Physics, 2011, 44 (36): 365402.
- [18] Lebedev A A. Deep level centers in silicon carbide: A review[J]. Semiconductors, 1999, 33(2): 107-130.

- [19] Persson C, Lindefelt U. Relativistic band structure calculation of cubic and hexagonal SiC polytypes [J]. Journal of Applied Physics, 1997, 82(11): 5496-5508.
- [20] Limpijumnong S, Lambrecht W R L, Rashkeev S N, et al. Optical-absorption bands in the 1-3 eV range in n-type SiC polytypes [J]. Physical Review B, 1999, 59(20): 12890-12899.
- [21] Shockley W, Read W T. Statistics of the recombinations of holes and electrons [J]. Physical Review, 1952, 87(5): 835-842.
- [22] Tamulaitis G, Yilmaz I, Shur M S, et al. Carrier lifetime in conductive and vanadium-doped 6H-SiC substrates [J]. Applied Physics Letters, 2004, 84 (3): 335-337.
- [23] van Stokkum I H M, Larsen D S, van Grondelle R.
 Global and target analysis of time-resolved spectra
 [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2004, 1657(2/3): 82-104.
- [24] Fang Y, Wu X Z, Ye F, et al. Dynamics of optical nonlinearities in GaN[J]. Journal of Applied Physics, 2013, 114(10): 103507.
- [25] Wagner M, McLeod A S, Maddox S J, et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy [J]. Nano Letters, 2014, 14(8): 4529-4534.
- [26] Yang C Y, Chia C T, Chen H Y, et al. Ultrafast carrier dynamics in GaN nanorods [J]. Applied Physics Letters, 2014, 105(21): 212105.
- [27] Fang Y, Yang J Y, Xiao Z G, et al. Ultrafast alloptical modulation in Fe-doped GaN at 1. 31 and 1.55 μm with high contrast and ultralow power[J]. Applied Physics Letters, 2017, 110(16): 161902.
- [28] Galeckas A, Linnros J, Frischholz M, et al. Optical characterization of excess carrier lifetime and surface recombination in 4H/6H-SiC [J]. Applied Physics Letters, 2001, 79(3): 365-367.
- [29] Mitchel W C, Mitchell W D, Fang Z Q, et al. Electrical properties of unintentionally doped semiinsulating and conducting 6H-SiC [J]. Journal of Applied Physics, 2006, 100(4): 043706.
- [30] Mitchel W C, Mitchell W D, Landis G, et al. Vanadium donor and acceptor levels in semiinsulating 4H- and 6H-SiC [J]. Journal of Applied Physics, 2007, 101(1): 013707.
- [31] Schneider J, Müller H D, Maier K, et al. Infrared spectra and electron spin resonance of vanadium deep level impurities in silicon carbide[J]. Applied Physics Letters, 1990, 56(12): 1184-1186.